一次导等于1-ye^(-xy), 二次求导等于y^2 e^(-xy)
y = x + e^(-xy)
When x = 0,y = 0 + e^(-0×y) = 1
dy/dx = 1 + [e^(-xy)]×[-y - xdy/dx] [*]
When x = 0,
dy/dx = 1 + [e^(-0×1]×[-1 - 0×dy/dx] = 1 - 1 = 0
From [*]
d²y/dx² = [e^(-xy]×[-y - xdy/dx]² + [e^(-xy]×[-2dy/dx - xd²y/dx²]
When x = 0
d²y/dx² = 1×[-1 - 0×0]² + 1× [-2×0 - 0×d²y/dx²]
d²y/dx² = 1
四楼正解。
三楼胡扯!这是隐函数求导,不是求偏导,一解导数就离题万里,还胡扯二次导数。
不懂不要来糊弄别人!
问题是什么啊???
问题是??