证明:a^2+b^2=c^2+d^2=1a^2=1-b^2,c^2=1-d^2(ac-bd)^2+(ad+bc)^2=a^2c^2+b^2d^2-2abcd+a^2d^2+b^2c^2+2abcd=a^2c^2+b^2d^2+a^2d^2+b^2c^2=(1-b^2)(1-d^2)+b^2d^2+(1-b^2)d^2+b^2(1-d^2)=1-b^2-d^2+b^2d^2+b^2d^2+d^2-b^2d^2+b2-b^2d^2=1∴(ac-bd)^2+(ad+bc)^2=1