在平面直角坐标系中,矩形abcd的顶点

2025-12-17 02:34:54
推荐回答(1个)
回答1:

如图,作点B关于AC的对称点B′,过点B′作OB的垂线垂足即为点N,该垂线与x轴的交点即为点M,则B′N=B′M+MN=BM+MN,B′N的长就是BM+MN的最小值.
连接OB′,交DC于P.
∵四边形ABCD是矩形,
∴DC∥AB,
∴∠BAC=∠PCA,
∵点B关于AC的对称点是B′,
∴∠PAC=∠BAC,
∴∠PAC=∠PCA,
∴PA=PC.
令PA=x,则PC=x,PD=20-x.
在Rt△ADP中,∵PA 2 =PD 2 +AD 2
∴x 2 =(20-x) 2 +10 2
∴x=12.5.
∵cos∠B′ON=cos∠OPD,
∴ON:OB′=DP:OP,
∴ON:20=7.5:12.5,
∴ON=12.
∵tan∠MON=tan∠OCD,
∴MN:ON=OD:CD,
∴MN:12=10:20,
∴MN=6.
∴点M的坐标是(12,6).
故答案为(12,6).