已知函数f(x)=2根号3cos^2x-2sinxcosx-根号3求函数的最小正周期和最小值,要详细过程

还有单调递增区间
2025-12-17 15:21:55
推荐回答(3个)
回答1:

f(x)=2√3cos²x-sin2x-√3
=√3(2cos²x-1)-sin2x
=√3cos2x-sin2x
=2(cos2xsinπ/3-sin2xcosπ/3)
=2sin(π/3-2x)
所以函数的最小正周期k=2π/2=π
最小值=-2

回答2:

f(x)=2√3cos^2x-2sinxcosx-√3
=√3(cos2x+1)-sin2x-√3
=√3cos2x-sin2x
=-2(sin2xcosπ/3-cos2xsinπ/3)
=-2sin(2x-π/3)
最小正周期=π
最小值-2
单调增区间:x∈(kπ+5π/12,kπ+11π/12)其中k∈Z

回答3:

f(x)=2根号3cos^2x-2sinxcosx-根号3
=√3(1+cos2x)-sin2x-√3
=√3cos2x-sin2x
=-2sin(2x-π/3)
函数的最小正周期为π
最小值为-2
单调递增区间为[kπ-7π/12,kπ-π/12](k∈Z)