π/4<α<3π/4cosα=5/13sinα=根号(1-cos^2α)=12/130<β<π/4sinβ=5/13cosβ=根号(1-sin^2β)=12/13sin(α+β)=sinαcosβ+cosαcosβ= 12/13 * 12/13 + 5/13 * 5/13= 1
π/4sina>0sina=√(1-cos^2a)=12/130cosb>0cosb=√(1-sin^2b)=12/13sin(a+b)=sinacosb+cosasinb=12/13*12/13+5/13*5/13=144/169+25/169=169/169=1