已知a,b,y,x是有理数,且x-a的绝对值+(y+b)²=0

求[(a²+ay-bx+b²)/(x+y)]/[(a²+ax+by-b²)/(a+b)]
2025-12-16 13:53:13
推荐回答(4个)
回答1:

绝对值和平方都大于等于0
相加等于0则都等于0
所以x-a=0,y+b=0
x=a,y=-b

[(a²+ay-bx+b²)/(x+y)]/[(a²+ax+by-b²)/(a+b)]
=[(a²-2ab+b²)/(a-b)]/[(a²+a²-b²-b²)/(a+b)]
=[(a-b)²/(a-b)]/[2(a+b)(a-b)/(a+b)]
=(a-b)/2(a-b)
=1/2

回答2:

x-a的绝对值+(y+b)²=0
x-a=0,y+b=0,
x=a,y=-b代入[(a²+ay-bx+b²)/(x+y)]/[(a²+ax+by-b²)/(a+b)]
=[(a²-2ab+b²)/(a-b)]/[(a²+a²-b²-b²)/(a+b)]
=(a-b)/2(a-b)
=1/2

回答3:

∵|x-a|+(y+b)²=0,∴x=a,y=-b。
∴(a²+ay-bx+b²)/(x+y)
=(a²-ab-ab+b²)/(a-b)
=a-b,

(a²+ax+by-b²)/(a+b)
=(a²+aa-bb-b²)/(a+b)
=2(a-b)

∴原式=(a-b)/2(a-b)=1/2.

回答4:

x-a的绝对值+(y+b)²=0
x=a,y=-b
[(a²+ay-bx+b²)/(x+y)]/[(a²+ax+by-b²)/(a+b)]
=[(a^2-2ab+b^2)/(a-b)]/[2(a^2-b^2)/(a+b)]
=(a-b)/2(a-b)
=1/2